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The effect of coupling strength inhomogeneity on the synchronization of identical oscillators is investigated.
Through simulations and analysis of phase-reduced models, it is shown that the mean value of coupling
function and the degree of inhomogeneity in the total of coupling strength to the each oscillator cooperate to
stabilize incoherent states. Under some circumstances, there can be bistability between coherent and incoherent
states. Various cases of coupled Morris-Lecar oscillators are studied as examples of our results.
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I. INTRODUCTION

Synchronization of coupled oscillators is important and
has been widely studied in a variety of systems from physics,
chemistry, and biology �1–8�. The role of inhomogeneity has
drawn attention from researchers in studies of synchroniza-
tion and related topics including wave formation with the
main focus on inhomogeneities in the intrinsic parameters of
the oscillators, such as their uncoupled frequency. In addition
to these inhomogeneities intrinsic to the oscillators them-
selves, many systems including neural systems �9,10� can
have inhomogeneities in their coupling such as in coupling
topology, coupling strength, and coupling type, and the effect
of these inhomogeneities has begun to be explored
�7,8,11–17�.

Recently, several studies showed that inhomogeneity in
coupling can affect the synchronization of coupled oscilla-
tors �11–15�. Golomb and Hansel studied the effect of inho-
mogeneity of the number of inputs to oscillators in randomly
coupled oscillators with uniform coupling strength using the
phase reduction method �11�. They found that the system
synchronizes above a critical number of inputs, in which
case the inhomogeneity of the number of inputs becomes
small enough not to interfere with the synchronization �11�.
After the introduction of the concept of a “scale-free net-
work,” which has a very broad distribution in the number of
connections per element �18�, Nishikawa et al. studied the
synchronization of coupled oscillators with uniform coupling
strength on this type of network. They showed that synchro-
nization is much harder to achieve in the networks with
strong inhomogeneity in the number of inputs than in ran-
dom homogeneous networks �12�. In later papers, it was also
shown that when the coupling strength is weighted by the
inverse of the number of inputs, synchronization is enhanced
�13,14�. Denker et al. studied the effect of coupling strength
inhomogeneity in networks of pulse-coupled oscillators with
directed random connectivity and found that the coupling
strength inhomogeneity leads to asynchronous, aperiodic
states �15�.

In this paper, we study the effects of coupling strength
inhomogeneity on synchronization in phase-reduced models

by explicitly introducing the inhomogeneity. Understanding
the effects in phase-reduced models is useful, since such
models can represent many aspects of coupled limit-cycle
oscillators. For example, they can be a model for synapti-
cally or electrically coupled Morris-Lecar oscillators �19,20�
or FitzHugh-Nagumo oscillators �21�. We show that incoher-
ent states can be stabilized as we increase the inhomogeneity
of the coupling strength. Surprisingly, we find that the sys-
tem can exhibit bistability between a coherent state and an
incoherent state, which does not exist in the systems with
homogeneous coupling strengths. Using a Fokker-Planck
equation for the population density of oscillators, we show
how the coupling function plays a role in determining the
critical amount of inhomogeneity required for a stable inco-
herent state.

II. MORRIS-LECAR OSCILLATORS WITH COUPLING
STRENGTH INHOMOGENEITY

As an example of coupled limit-cycle oscillators with
coupling strength inhomogeneity, we study Morris-Lecar
�ML� oscillators with synaptic or electric coupling �19,20�:

C
dVi

dt
= − Il,i − IK,i − ICa,i − Ic,i + I

= − ḡl�Vi − El� − ḡKwi�Vi − EK�

− ḡCam��Vi��Vi − ECa� − Ic,i + I ,

dwi

dt
= �

�w��Vi� − wi�
�w�Vi�

, i = 1,2, . . . ,N , �1�

where Ic,i is the coupling current to oscillator i, I �in
�A /cm2� is an injected current, and N is the total number of
oscillators. Details of the functions and the parameter values
are in Appendix A. With these parameter values, the un-
coupled single ML oscillator shows monostable periodic fir-
ing for I between I1=40 and I2=98. The periodic firing ap-
pears via a saddle-node on invariant circle bifurcation and
thus the frequency of the firing can be arbitrarily small near
the bifurcation point �20,22�.

We simplify the coupling as a mean field weighted by Ki.
The dependence of Ki on i reflects the inhomogeneity in the
total coupling strength to the oscillators. For synaptic cou-
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pling, the coupling current Ic,i is Isyn,i given by

Isyn,i =
Ki

N
�
j=1

N

sj�Vi − Esyn� , �2�

where sj is a synaptic gating variable. The kinetics of sj and
the value of Esyn are described in Appendix A. With the
given value of Esyn, the synaptic coupling is excitatory. For
gap junction coupling, the coupling current Ic,i is Igap,i given
by

Igap,i =
Ki

N
�
j=1

N

�Vi − Vj� . �3�

In Eqs. �2� and �3�, the coupling strengths Ki are randomly
assigned from K0�1−�K ,1+�K�, where �K� �0,1� and we
use K0=0.1 so that the couplings are weak enough not to
distort the limit cycle significantly. For weak coupling, we
can apply phase-reduction method to this model. In cases
without noise, K0 does not affect phase distribution of the
system as long as K0 is small.

We simulate the full model for different injected currents:
I=45, 50, and 80. For these injected currents, a single un-
coupled oscillator shows a periodic oscillation. Among the
three injected currents, smaller I is closer to the saddle node
bifurcation point.

We use two kinds of initial conditions: �i� near-
synchronous states where the oscillators initially lie on al-
most the same points on the limit cycle or �ii� near-
incoherent states where the oscillators almost uniformly
distributed over the period of the oscillators. We simulate Eq.
�1� using a fourth-order Runge-Kutta method with time step
�t=0.01.

Figure 1 shows the raster plots for synaptically coupled
cases for I=50 and I=80. Results with I=45 are similar to
those with I=50 �not shown�. Every time an oscillator
spikes, a dot is plotted at the time-oscillator index point. The
system shows highly synchronous behaviors for both of the
injection currents with small amount of coupling strength
inhomogeneity �Fig. 1�a� for I=50 and Fig. 1�d� for I=80�.
However, the system shows different behaviors for larger
inhomogeneity. While the system still exhibits highly syn-
chronous states for I=80 �Fig. 1�e��, it shows bistability be-
tween synchronous and incoherent states for I=50 �Figs. 1�b�
and 1�c��. With gap junction coupling, the system shows only
synchronous states for all the injection currents and the in-
homogeneity considered �not shown�. Phase-reduced sys-
tems from Eq. �1� �3–6� show similar behaviors.

In subsequent sections, we show that the shape of the
phase-reduced interaction function plays a critical role in de-
termining the stability of the synchronous and incoherent
states. As the shape of the functions depends on both the
firing rate and the nature of the coupling, we are able to
explain the results of Fig. 1.

III. PHASE MODEL AND SIMULATIONS

We use phase-reduced models to understand the effect of
coupling strength inhomogeneity. We study identical coupled

oscillators with same type of coupling as this is the simplest
case which clearly illustrates the coupling strength inhomo-
geneity effect. Systems of weakly coupled identical limit-
cycle oscillators can be reduced to the following system
�3–6�:

�̇i�t� = � +
1

N
�
j=1

N

KijH„� j�t� − �i�t�… + �2D	i�t� ,

i = 1,2, . . . ,N , �4�

where �i�t� is the phase of ith oscillator at time t, � is the
natural frequency of the oscillators, and N is the total number
of oscillators. The second term on the right side denotes the
coupling between oscillator i and other oscillators. Kij is the
coupling strength from oscillator j to oscillator i and Kij

0. H��� is the coupling function obtained by the phase
reduction method for pairwise interaction �3–6�. H��� is a
2�-periodic function and depends only on the phase differ-
ence of the interacting oscillators. In general, the coupling
function H��� can be written as a Fourier series:

H��� = c0 + �
m=1

cm sin�m� + �m�, cm 
 0,

m = 1,2, . . . . �5�

The third term of Eq. �4� is the noise. D
0 is the noise
strength and 	i�t� are independent white noise processes hav-
ing the properties
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FIG. 1. �Color online� Raster plots for ML oscillators with dif-
ferent degrees of the coupling strength inhomogeneity. The oscilla-
tors are synaptically coupled. N=3200 and K0=0.1. Near-
synchronous initial conditions �SICs� or near-incoherent initial
conditions �IICs� are used. I=50: �a� �K=0.5 and IIC, �b� �K
=1.0 and IIC, �c� �K=1.0 and SIC. I=80: �d� �K=0.5 and IIC, �e�
�K=1.0 and IIC.
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�	i�t�� = 0, �	i�t�	 j�t��� = 
ij
�t − t�� . �6�

In the absence of the noise term, the requirement for the
system to have a perfectly synchronous state is that the cou-
pling term be the same for all the oscillators when they have
the same phase. This is satisfied in two different ways: con-
dition �a� H�0�=0; condition �b� Si	

1
N� j=1

N Kij is the same for
all i. These conditions can be satisfied independently. When
one of these condition is satisfied and each oscillator is di-
rectly or indirectly influenced by every other oscillator
through the connection networks, the local stability condition
for the synchronous state is H��0��0 �23�. In this paper, we
study the case where condition �b� is not satisfied. We require
H��0��0 to be satisfied so that synchronous states are stable
without the inhomogeneity in Si and noise.

In the studies with homogeneous coupling strength sum
Si, c0 in Eq. �5� has no effect on the dynamics of the system
except changing the frequency uniformly and thus has been
usually ignored or introduced to match frequencies. How-
ever, when the coupling has some spatial inhomogeneity as
in the case of a linear chain of nearest coupled oscillators
where oscillators at the boundaries have different coupling,
c0 can contribute to the inhomogeneity of frequencies and
thus the nontrivial dynamics of the system �24�. Similarly, in
randomly coupled oscillator cases where the number of in-
puts is not homogeneous, it was shown that c0 can cause
desynchronization by contributing to the effective frequency
distribution �11�. Thus, we can expect desynchronization due
to both c0 and the inhomogeneity in Si in our system. Note
that the violation of condition �b� does not necessarily mean
the absence or destabilization of perfectly synchronous states
or coherent states �e.g., if condition �a� holds�. Further, we
note that for gap junction coupling, H�0�=0 �25�. Thus, as
long as H��0��0, synchrony is always stable.

We mainly study the simplest case of inhomogeneous
coupling Kij =Ki, where Ki is chosen randomly from �1
−�K ,1+�K�. This interval is general in the sense that cases
with other intervals can be transformed to cases with this
one. We thus focus on

�̇i�t� = � +
Ki

N
�
j=1

N

H„� j�t� − �i�t�… + �2D	i�t� ,

i = 1,2, . . . ,N . �7�

This model is the simplest generalization of the thoroughly
studied model for globally coupled oscillators with Ki=K
�3–5�, so it is easy to analyze and simulate. In this model,
Si=Ki and thus the inhomogeneity of Ki corresponds to the
inhomogeneity of Si. As shown numerically at the end of this
section, this model can be a good approximation of the gen-
eral model of Eq. �4� when 1

N� j=1
N Kij =Ki and oscillators are

randomly coupled. This model can be considered as a mean-
field approximation of general cases.

We see that in this model c0 can have a desynchronizing
effect in relation with the harmonic part Hh���	
H���−c0�
�11�. In the extreme case in which �c0� is much greater than
�Hh���� for all �, the system can have effective frequency
differences in the presence of the inhomogeneity and thus

can show incoherent behaviors. However, in the cases with
�c0� and �Hh���� in the same range, it is not obvious that stable
incoherent behavior exists. Here, we mainly consider c0 as a
parameter of the coupling function and study the family of
coupling functions c0+Hh��� for a given Hh��� of a coupling
function H���.

Let us first consider the case with H���=c0+sin��+�1�,
where �1� �−� /2,� /2�. This coupling function is a good
approximation of many general coupling functions and sat-
isfies the condition H��0��0. Equation �7� becomes

�̇i = � +
Ki

N
�
j=1

N

�c0 + sin�� j − �i + �1�� + �2D	i�t�

= � + Ki�c0 + R1 sin��1 − �i + �1�� + �2D	i�t� , �8�

where Rn and �n are the order parameters and corresponding
phases, respectively, defined by

Rnein�n =
1

N
�
j=1

N

ein�j, n = 1,2, . . . . �9�

It was shown that almost all initial conditions lead to the
synchronous state in cases with Ki=K and D=0 �26,27�.

We simulate Eq. �8� using the Euler method with time
step �t=0.01. A smaller time step does not significantly alter
the results. We use two kinds of initial conditions: �i� �i�0�
chosen randomly from �0,2�� or �ii� �i�0�=�i, where �i is a
random number chosen from �0,
� with 
 small.

Figures 2�a�–2�d� are raster plots showing the effect of
coupling strength inhomogeneity and the constant c0 of the
coupling function. Every time an oscillator reaches phase
2�, a dot is plotted at the time-oscillator index point. Even
though the coupling strength inhomogeneity is the same for
Figs. 2�a� and 2�b�, the system shows totally different behav-
iors with different c0. The system can show coherent behav-
ior with small c0 �Fig. 2�a��, but incoherent behavior with c0
beyond some critical value �Fig. 2�b��. We can observe simi-
lar transition from coherent states to incoherent states if we
increase the inhomogeneity with other parameters fixed
�Figs. 2�a�–2�c��. Figure 2�c� with increased �K shows inco-
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FIG. 2. �Color online� Raster plots showing the effect of the
coupling strength inhomogeneity and c0 of Eq. �8�. D=0.1. Ki is
randomly selected from �1−�K ,1+�K�. �1=−0.3�. N=1600. �a�
�K=0.4, c0=0.7. �b� �K=0.4, c0=1.8. �c� �K=1.0, c0=0.7. �d�
�K=1.0, c0=0. Random initial condition from �0,2�� is used.
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herent behavior compared to �a�. If we decrease c0 in the
case of Fig. 2�c�, we can get more coherent behavior �Fig.
2�d��. These raster plots show that coupling strength inhomo-
geneity and c0 of coupling function can cause the desynchro-
nization of the system.

To see how the dynamics of the system depends on c0, �1,
and �K, we measure the order parameter. For each point of
Fig. 3, we simulate with ten different configurations of the
system. More specifically, we use ten different sets of Ki and
noise. From the initial conditions, the system evolves to a
steady state. The order parameter R1 approaches a value with
small fluctuation and the fluctuation decreases as we in-
creases the total number of oscillators. Thus, we conclude
that the fluctuation is due to finite-size effects, and in the
limit of infinite size, the system approaches a steady state
characterized by a single order parameter. We calculate the
time average of the order parameter for each simulation after
transient states. Then, the time-averaged order parameters
are averaged over the simulations with the same kind of ini-
tial conditions, creating two ensemble averages for the two
different initial conditions, respectively. We plot both of
them if the two ensemble averages are significantly different,
otherwise we plot one of them. In Fig. 3�a� with coupling
strength inhomogeneity ��K=0.4� and noise �D=0.1�, the
system exhibits coherent states when c0 is small, but shows
incoherent states beyond some critical c0 value which de-
pends on �1 and �K. The critical c0 value usually decreases
as ��1� or �K increases. Except for �1=−0.45�, the curves
have peak near c0=−sin �1 ��0� which makes H�0�=0. For
�1=−0.45�, the system shows incoherent behavior for all c0.
Figure 3�b� shows similar behavior with a larger coupling
strength inhomogeneity ��K=1.0�. The critical c0 values be-
come smaller and the order parameter values are also smaller
compared to those of Fig. 3�a�. In Fig. 3�c�, without noise

�D=0�, which is one of the sources of disorder in the system,
we can still see the transition from coherent to incoherent
states. The system shows perfectly synchronous states with
c0=−sin �1. The states with order parameters less than one
but significantly greater than 0 are partially locked states in
these cases without noise. The critical c0 values become
larger compared to those of Fig. 3�b� with the same amount
of inhomogeneity ��K=1.0�. Now we can see the coherent-
incoherent transition for �1=−0.45�. This is because the in-
coherent state is stable for �1=−0.45� even with c0=0 for
noisy cases of Figs. 3�a� and 3�b�, but unstable in this case
without noise. Note that there exists bistability between co-
herent and incoherent states for �1 near −� /2 and c0 near
−sin �1. In the bistable region, the system reaches either an
incoherent state or a coherent state depending on the initial
conditions. The former is obtained with near incoherent ini-
tial conditions and the latter is with near perfectly synchro-
nous initial conditions. We can still see the bistability in the
presence of small amount of noise, but the bistable region
becomes smaller for larger noise �Fig. 3�d��.

The mechanism for this bistability between coherent and
incoherent states differs from those of previous studies,
where the bistability is due to time-delayed interaction
�28,29� or the dynamic change of coupling strengths �17� or
strong coupling �11�. The bistability of our model is caused
by the desynchronization due to the coupling strength inho-
mogeneity near the parameter range where coherent states
are locally stable. Our mechanism implies that the bistability
can occur in randomly and sparsely coupled oscillators
where a nonuniform number of inputs effectively introduces
a coupling strength inhomogeneity �11�. This phenomenon
may be related to the recently reported bistability between
synchronous states and chimera states in nonlocally coupled
identical oscillators �30–32�. In chimera states, phase-locked
oscillators coexist with drifting ones. Similar to the bistabil-
ity of our model, the bistability between a synchronous state
and a chimera state was shown to occur for the same cou-
pling function of Eq. �8� when �1 is near −� /2 �30–32�.

Simulations with more general coupling functions with a
dominant mth-order term in Eq. �5� show a similar transition
from coherent states to incoherent states. In these simula-
tions, the order parameter Rm defined by Eq. �9� exhibits the
transition as c0 changes.

Even though the model Eq. �7� is simple and idealized, it
is a good approximation of more complex situations. In Fig.
4, we compare the results from Eq. �8� and those from the
following randomly coupled oscillator model with H���=c0
+sin��+�1� and sufficiently large number of connections:

�̇i = � +
Ki

� j=1
N wij

�
j=1

N

wijH„� j�t� − �i�t�… + �2D	i�t� ,

�10�

where wij is introduced to implement the inhomogeneity in
all the coupling strengths in addition to the inhomogeneity in
coupling strength sum. In this coupled oscillator model, the
connections between oscillators are given by bidirectional
random network where two oscillators have connection with
a constant probability and the connection is bidirectional �8�.
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FIG. 3. �Color online� Averaged order parameter R1 versus c0

for Eq. �8� with different values of �1. �a� D=0.1 and �K=0.4. �b�
D=0.1 and �K=1.0. �c� D=0 and �K=1.0. �d� D=0.02 and �K
=1.0. The symbols represent the averaged order parameters which
are obtained by first averaging order parameter R1 of Eq. �9� over
time and then over simulations with different 
Ki� and noise con-
figurations. For more detail, see the text. The error bars indicate the
standard deviation of the time-averaged order parameters and the
curves are guides for the eyes. N=1600.
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wij is nonzero only for connected oscillators and randomly
selected from �0,2�. This range is chosen because it gives the
worst case among the distribution in the form of �1−�w ,1
+�w� with �w� �0,1�. Without the multiplication by
Ki /� j=1

N wij, the system shows coherent behavior. This is due
to the fact that the sums � j=1

N wij are distributed closely to the
average value for a large enough number of neighboring os-
cillators. By dividing the interaction sum by � j=1

N wij, we can
control the inhomogeneity of coupling strength sum through
Ki only and can see its effect. We simulate with ten different

wij�, networks, and noise configuration and calculate the
averaged order parameters. Figure 4 shows the averaged or-
der parameter R1 as a function of c0. The curves from Fig. 3
of the all-to-all coupling case fit well with those values. This
indicates that the globally coupled model with the inhomo-
geneity only in Ki is a good approximation of randomly
coupled oscillator model of Eq. �10� as far as the
incoherence-coherence transition is concerned.

Note that the randomly coupled oscillator model has a
stable in-phase state synchronous state when H�0�=0 and
H��0��0 �theorem 3.1 of Ref. �23�� and shows incoherent
states as the globally coupled model. Therefore, we can ob-
serve at least the bistability between an incoherent state and
an in-phase state in this model. However, the nonuniformity
in wij and the sparseness of the connections act as sources of
disorder and thus can affect the coherent states other than
in-phase states. We see that the coherent states observed in
the mean-field model with c0�c

0
* disappear first for larger c0

as �w increases and/or the average number of connections
decreases.

IV. ANALYSIS OF THE POPULATION DENSITY
EQUATION

We can analyze the transition from uniformly incoherent
states to coherent states of Eq. �7� using standard population
density analysis �4,5,11,33,34�. As N→�, we can define a
density ��� ,K , t� for each K such that ��� ,K , t�d� denotes
the fraction of oscillators whose phase lies between � and

�+d�, where K corresponds to Ki. The density ��� ,K , t�
should satisfy the Fokker-Planck equation �4,5,11,33,34�

����,K,t�
�t

= −
�
���,K,t�v�

��
+ D

�2���,K,t�
��2

= −
�

��
���,K,t��� + K�
0

� �
0

2�

�H��� − ������,K�,t�g�K��d�� dK���
+ D

�2���,K,t�
��2 , �11�

where g�K� is the probability density for K.
The uniformly incoherent state with ��� ,K , t�=1 /2� is a

solution of Eq. �11�. To find the transition point between
coherent states and the uniformly incoherent state, we do a
linear analysis around the uniformly incoherent state and ob-
tain the following equations for the eigenvalue �n=�n− i�n
− in� which determines the stability of mode n with n being
an integer. Here, we use the Fourier series of the coupling
function H��� �Eq. �5��. We consider only cases with c0
0,
since cases with c0�0 can be transformed to these cases:

2 cos �n

ncn
= �

0

� Kg�K���n + n2D�dK

��n + n2D�2 + �nKc0 − �n�2 , �12�

2 sin �n

ncn
= �

0

� − Kg�K��nKc0 − �n�dK

��n + n2D�2 + �nKc0 − �n�2 . �13�

These equations are similar to those obtained in Ref. �11�. In
Ref. �11�, the effect of the inhomogeneity of the number of
inputs to oscillators was studied, and the number of inputs
was used instead of K of our system to derive those equa-
tions.

In this paper, we deal with the simple case with g�K�
=1 / �2�K� for K� �1−�K ,1+�K� and g�K�=0 otherwise.
In this case, Eqs. �12� and �13� become

cos �n

ncn
=

1

4�K
�

1−�K

1+�K K��n + n2D�dK

��n + n2D�2 + �nKc0 − �n�2 , �14�

sin �n

ncn
=

1

4�K
�

1−�K

1+�K − K�nKc0 − �n�dK

��n + n2D�2 + �nKc0 − �n�2 . �15�

Writing D�	 nD
cn

, c0�	
c0

cn
, �n�	

�n

ncn
, and �n�	

�n

ncn
, we can

rewrite Eqs. �14� and �15�:

cos �n =
1

4�K
�

1−�K

1+�K K��n� + D��dK

��n� + D��2 + �Kc0� − �n��
2 , �16�

sin �n =
1

4�K
�

1−�K

1+�K − K�Kc0� − �n��dK

��n� + D��2 + �Kc0� − �n��
2 . �17�

When cos �n�0—in other words, �n
� �� /2,��� �−� ,−� /2�—the left-hand side of Eq. �14� is
always negative and thus �n, the real part of �n, should be

0
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R
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__
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FIG. 4. �Color online� Averaged order parameter R1 versus c0

for randomly coupled oscillators of Eq. �10�. The symbols represent
the averaged order parameters which are obtained by first averaging
order parameter R1 of Eq. �9� over time and then over simulations
with different 
wij�, networks, and noise configurations. The error
bars indicate the standard deviation of the time-averaged order pa-
rameters. The curves are those connecting averaged order param-
eters for the same parameters in Figs. 3�b� and 3�c� for the all-to-all
coupling case. N=1600, �K=1.0, average number of neighboring

oscillators k̄=20, and �1=−0.1�.
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negative to satisfy the equality. Therefore, in this case, the
corresponding eigenmode decays regardless of coupling
strength inhomogeneity. To avoid the case of trivially stable
incoherent state, we require that at least one �n is outside of
those range. Note that if �n� �� /2,��� �−� ,−� /2� for all n
then H��0��0 which violates our assumption of stable syn-
chrony for homogeneous coupling strength cases. Therefore,
we consider modes with �n� �−� /2,� /2� in the following
analysis.

Before discussing general cases, let us consider the case
with c0=0. From Eqs. �14� and �15�, we obtain the following
expression of �n for the uniform distribution g�K�:

�n = �n

2
cn cos �n − n2D� − in� cn

2
sin �n + �� . �18�

This shows that in this case the stability is independent of the
width �K of coupling strength inhomogeneity. We numeri-
cally find that Re��n� decreases monotonically as c0 or �K
increases when c0�0. An increase in c0 or �K stabilizes the
incoherent state. Therefore, if Re��n��0 for all n when c0
=0, the incoherent state is stable regardless of c0. This is the
case for the cases with �1=−0.45� and D=0.1 of Figs. 3�a�
and 3�b�. As we change c0, the system can show the transi-
tion from coherent states to incoherent states where Re��n�
�0 for all n only when n

2cn cos �n�n2D for at least one n.
For each mode number n, we can find the critical c0 above

which the corresponding mode decays. Let us call it c
0n
* . The

critical c0, c
0
*, above which the uniformly incoherent state

become stable is given by

c0
* = max

n

c0n

* � . �19�

As mentioned above, we numerically observe that the real
part of the eigenvalue, �n�, decreases monotonically from the
maximum value � 1

2 cos �n−D�� as we increase c0� or �K with
other parameters fixed. From the Eqs. �16� and �17� with
fixed �K and �n, we can see that as D� increases, the same
set of c0� and �� is a solution for the same value of �n�+D�.
Therefore when D� changes from D� to D�+�D�, �n� de-
creases by �D� for the same c0� and thus the curve for �n�
versus c0� moves downward by �D�. The critical c0� for which
�n�=0 decreases with the increase of D�. We also observe
that �n does not significantly affect the order magnitude of
c

0n
* . For general coupling function H���, cn is usually smaller

for larger n, so the effective noise D��=nD /cn� is larger for
fixed D and �K. Thus, the critical c0� is smaller for larger n
and c

0n
* is much smaller, because c0=c0�cn. Therefore, c

0
* is

usually determined by the lower order harmonics of H���.
To find out the critical c0 for the cases with noise �D

�0�, we numerically find c0�, �n�, and �n� that satisfy Eqs.
�16� and �17�. The critical c0� is obtained with �n�=0. The
system shows a Hopf bifurcation from incoherent states to
coherent states as c0 decreases. It is a Hopf bifurcation since
the imaginary part of the eigenvalue corresponding to �n�
=0 is not zero. The system exhibits n-cluster states when the
mode n destabilizes.

For the cases without noise �D�=0 in Eqs. �16� and �17��,
we consider the limit of �n�→0+ for each n to find the critical

c0 �4,33�. In this limit, if �Kc0�−�n�� vanishes for some K in
the integration range, the right-hand side of Eq. �16� can
have a value other than zero and there can be c0� satisfying
this equation. More specifically, the condition is that c0��1
−�K�−�n��0 and c0��1+�K�−�n��0 for a positive c0�. We
integrate the right-hand sides of Eqs. �16� and �17�, and ob-
tain

cos �n =
�n��

4c0�
2�K

, �20�

sin �n =

− 4c0��K + �n� ln� c0��1 − �K� − �n�

c0��1 + �K� − �n�
�2

8c0�
2�K

. �21�

Therefore, we need to find c0� and �n� that satisfy the fol-
lowing equation and inequality:

sin �n =

− � + cos �nc0� ln� �1 − �K�� − 4�Kc0� cos �n

�1 + �K�� − 4�Kc0� cos �n
�2

2�c0�
,

�22�

�1 − �K��
4�K cos �n

� c0� �
�1 + �K��
4�K cos �n

. �23�

Figures 5�a� and 5�b� show critical c0 values, c
0
*, as a

function of the width �K of coupling strength inhomogeneity
for cases with H���=c0+sin��+�1�. The curves represent
numerically obtained c

0
* from Eqs. �16� and �17� or Eqs. �22�

and �23�. Symbols are for the critical values obtained from
simulations. Because of the size effect, it is difficult to de-
termine the critical points by simulations with one value of
N. But the size N=1600 is large enough to represent well the
cases with larger system sizes except near critical points. It
still gives small order parameters near critical points. We
determine the critical c0 by the points where time-averaged
order parameter becomes less than 0.2. We choose 0.2 as a
criterion, because values around this value go to zero as we
increase the system size for large values of �K �simulations
not shown�. Such values depend on �K and decrease as �K
decreases, but using 0.2 for all �K does not change the result
significantly, since c

0
* increases greatly as �K decreases. We

search for the critical points around theoretically obtained
critical c0 values on the curves with 0.05 intervals. We aver-
age the values over states from simulations with ten different
configurations. The theoretically obtained curves fit well
with the simulation results.

Figure 5�c� shows the theoretically obtained c
0
* for cases

without noise as a function of �1 for several �K. The curves
for critical values are nonmonotonic in �1 and the minimum
point moves toward �1=−� /2 as �K increases. For large
values of �K, the critical value decreases monotonically for
wide range of �1. Next, we determine the parameter range
for bistability between a perfectly synchronous state and an
incoherent state. Note that the system without noise has a
stable synchronous state when H�0�=0 and is bistable when
c

0
* is less than c0 for which H�0�=0. For H���=c0+sin��
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+�1�, H�0�=0 when c0=−sin �1. So bistability occurs when
H�0�=0 and c

0
*�−sin �1. In Fig. 5�d�, we plot theoretically

obtained �1 values that satisfy the equality c
0
*=−sin �1, as

we change �K �curves�. They exist only for �K�0.731, and
because of the nonmonotonicity shown in Fig. 5�c�, there are
two values for each �K. The condition c

0
*�−sin �1 is satis-

fied for the parameter range between the two values �shaded
region�. The bistability occurs in this parameter region. If
H�0� is nonzero, then we cannot, in general, guarantee the
existence of a synchronous �or highly coherent� state. How-
ever, since H��0��0, it follows that �i� for H�0� near zero,
there remain near synchronous solutions and �ii� they are
stable �Theorem 3.1 of Ref. �23��. Thus, we can see the bi-
stability between a coherent state and an incoherent state if
c0�c

0
* and c0 is close to the one that gives H�0�=0.

These results explain the behavior of the ML oscillators
described in Sec. II. We plot the �−�1 /� ,c0� of the phase
reduction �see Appendix B� as symbols in Fig. 5�c�. Only for
the two cases �synaptic coupling with I=45 and I=50� with
which c0 is above the curve for c

0
* when �K=1.0 does the

system show incoherent behavior. For these two cases, H�0�
is close to zero and thus the system can also exhibit synchro-
nous behavior. For other cases, c0 is less than c

0
* with all the

values of �K considered; thus, the system shows coherent
behavior. Figure 5�d� also shows this. The coupling functions
of ML oscillators can be approximated by H���=sin �1
+sin��+�1�, where �1 is from the original H functions �Ap-
pendix B�, and we plot −�1 /� for ML oscillators with �K
=0.5 and �K=1.0. The points only for the two cases �syn-
aptic coupling with I=45 and I=50� with large �K are in the
bistability region and thus the system can exhibit the bista-
bility with those conditions.

V. SUMMARY AND CONCLUSIONS

In summary, we have investigated the effects of coupling
strength inhomogeneity on the synchronization of oscillators.
Using phase-reduced models, we have found that inhomoge-
neity in the total sum of coupling strength to an oscillator can
stabilize incoherent states. The mean value of coupling func-
tion over one period and the degree of inhomogeneity are the
main factors affecting the dynamics of the system. Because
they cause effective frequency differences, larger values of
either one usually lead to the stabilization of incoherent
states. We have analyzed the system using population density
method and found the critical point at which an incoherent
state becomes stable. We have also found that the system can
show bistability between coherent and incoherent states. It is
caused by the desynchronization due to the coupling strength
inhomogeneity near the parameter range where coherent
states are locally stable.

This work may be related to other papers showing that the
inhomogeneity in the number of inputs can induce incoher-
ent states �11� or make synchronization harder to achieve
�12� in coupled oscillators on networks. This work also
seems to be consistent with the fact that weighing the cou-
pling term by the inverse of the number of inputs, which in
effect removes the inhomogeneity, can enhance the synchro-
nization �13,14�.
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0
*� and bistable region for cases with H���=c0+sin��+�1�. c

0
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region where c
0
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�c� are obtained from Eqs. �22� and �23� and those of �b� are from Eqs. �16� and �17�. For details, see the text.
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APPENDIX A: DETAILS OF THE MORRIS-LECAR
MODEL

The functions m��V�, w��V�, and �w�V� in Eq. �1� are
defined as follows:

m��V� = 0.5
1 + tanh��V − V1�/V2�� ,

w��V� = 0.5
1 + tanh��V − V3�/V4�� ,

�w�V� = 1/cosh��V − V3�/�2V4�� .

We use parameter values El=−60 mV, EK=−84 mV, ECa
=120 mV, ḡl=2 mS /cm2, ḡK=8 mS /cm2, ḡCa=4 mS /cm2,
C=20 �F /cm2, V1=−1.2 mV, V2=18 mV, V3=12 mV, V4
=17.4 mV, and �=1 /15.

The synaptic gating sj of Eq. �2� satisfies

dsj/dt = �k�Vj��1 − sj� − sj/�s,

k�V� = 1/
1 + exp�− �V − Vt�/Vs�� .

The values of the parameters are Esyn=120 mV, Vt=20 mV,
Vs=2 mV, �=1, and �s=4.

APPENDIX B: PHASE REDUCTION FOR MORRIS-LECAR
MODEL

Each coupling function is divided by �c1� for convenience
of comparison with the theory. This does not affect the phase
distribution of the system in the absence of noise.

With synaptic coupling, HMLs,I=45���=0.8430+sin
��−1.1214�+0.1458 sin�2�−3.0500�+h.o.t., HMLs,I=50���
=0.7912 + sin��−1.0940� + 0.1369 sin�2�−3.1381� + h.o.t.,
and HMLs,I=80���=0.5283+sin��−0.8927�+0.1087 sin�2�
+2.3779�+h.o.t., where “h.o.t.” means higher-order terms.

With gap junction coupling, HMLg,I=45���=0.5399+sin
��−0.5305�+0.1291 sin�2�−2.7025�+h.o.t., HMLg,I=50���
=0.5757 + sin��−0.5995� + 0.1031 sin�2�−2.8375� + h.o.t.,
and HMLg,I=80���=0.5569+sin��−0.6292�+0.0277 sin�2�
+2.2255�+h.o.t.
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